
Tutorial on Using CSTACK: X-Ray Stacks of
Distant Quiescent Galaxies

Sam Cutler

May 6, 2017

Abstract

This tutorial will focus on the process of finding X-ray fluxes of

distant massive quiescent galaxies using CSTACK. CSTACK is a soft-

ware that performs a stacking analysis of X-ray count rates for multiple

cosmological objects, which we will select to be these distant quies-

cent galaxies. Selecting these specific galaxies, from a catalog that

will be explained later in the introduction, will be the first part of the

tutorial. Next we will go over the basics of CSTACK, including what

each entry field means and what the specific format files uploaded to

CSTACK should have. Lastly we will analyze the CSTACK outputs

and examine what the important values to take away are. This should

provide you with a basic understanding on how to make X-ray stacks

with CSTACK in general.

1



Introduction

Before we begin the process of programing and using CSTACK, both of
which I will describe in detail later in the tutorial, we need to know why
we’re going through all this trouble. The goal here is to detect an X-ray
flux, and CSTACK is a valuable tool in doing this. Significant detection
of X-rays in distant galaxies would indicate a supermassive black hole (also
referred to as an Active Galactic Nuclei or AGN) in the observed galaxy.
High energy X-rays are also indicative of other objects like compact objects
or hot plasma, but we are generally not sensitive to these phenomena at
such large cosmological distances. The galaxies we will be observing are
called “quiescent”. Quiescent galaxies are those that have ceased star for-
mation due to either too much heat for gas to condense or too little gas, as
cold gas is the fuel for star formation. Often in astronomy, emission lines
are detected using spectroscopy, and are characteristic of many stellar ob-
ject. These emission lines are essentially specific energy photons emitted
from transitions in atoms (e.g. oxygen and hydrogen). In Whitaker et al.
(2013), centrally-concentrated [OIII] and H-beta emission lines were noticed
in distant, massive, quiescent galaxies, which could indicate either an AGN
or residual star formation at their centers. Ultimately, analysis of X-ray data
from these galaxies would serve to rule out or confirm black holes as the
cause for these emission lines.

In this tutorial, we will compile a sample of galaxies from the NEWFIRM
Medium-band Survey (NMBS) catalog, which covers a wide area (i.e. the size
of the moon in the sky) but only at a shallow depth. From NMBS, the specific
field we use is COSMOS (or the Cosmic Evolution Survey). The NMBS
COSMOS data can be downloaded from this tar and must be unpacked before
they can be used. The COSMOS field probes the evolution of galaxies based
on redshift (a measurement of cosmic time). Cosmological redshift, usually
denoted by z, is a measurement of how much the wavelength of light coming
from a source has been stretched by the expansion of space (like the Doppler
Effect). Light that has traveled further will result in a higher redshift, which
is why it is used as a measurement of both the age of the universe and
distance to galaxies. Obviously these catalogs are not entirely quiescent
galaxies, as they include star forming galaxies and foreground stars in our
own Milky Way Galaxy, but we can sort for quiescent galaxies based on their
rest-frame colors. Rest-frame colors are the relative ratio of fluxes in certain
wavelength bands and correlate with the age of a quiescent galaxy. Red
galaxies have more flux at a longer wavelengths (think the red-infrared end
of the electromagnetic spectrum), and vice versa for blue. Redder galaxies

2

http://iopscience.iop.org/article/10.1088/2041-8205/770/2/L39/pdf
http://cosmos.astro.caltech.edu/
http://www.astro.yale.edu/nmbs/Data_Products_files/cosmos-1.deblend.v5.1.tar.gz


are older and bluer ones are younger. Besides the age, quiescent galaxies
exhibit characteristic rest-frame colors that can be used to sort for them,
which we will discuss later on.

What’s Inside

When you unpack the COSMOS data linked in the introduction, the re-
sulting folder, “cosmos-1.deblend.v5.1”, will have a series of subfolders and
files. The README file details what each file contains and what the headers
(column names) denote. Another important file is “cosmos-1.deblend.v5.1.cat”,
the photometric catalog, which contains the use, id, ra, and dec headers. Use
refers to the use flag, which indicates good/usable data with a value of 1,
and poor data or foreground stars with 0. Id is the COSMOS assigned id
number for each object. Ra and dec are the right ascension and declination,
essentially a coordinate system for the location of observed objects on the
sky, in units of degrees. The remaining 3 subfolders and their important files
are:

1. cosmos-1.deblend.sps: Stellar population parameters (SPS)

(a) cosmos-1.bc03.del.deblend.v5.1.fout

2. cosmos-1.deblend.rfcolors: Rest frame colors

(a) cosmos-1.deblend.v5.1.153-155.rf

(b) cosmos-1.deblend.v5.1.155-161.rf

3. cosmos-1.deblend.redshifts: Photometric redshift catalog

(a) cosmos-1.deblend.v5.1.zout

From 1(a), “cosmos-1.bc03.del.deblend.v5.1.fout”, the lmass header denotes
the logarithm of the stellar mass of the object, where stellar mass is how
many times more massive an object or galaxy is than the sun. For example,
an object one billion times more massive than our sun has a stellar mass of 1
billion and a log mass of 9 (since log10(109)= 9). 2(a) and (b) give the bands
used to find the U-V and V-J ratios. These are ratios of specific wavelength
bands that help determine the age and star formation rates of galaxies in
units of magnitudes, and are defined by

U-V= −2.5 log10(FU/FV ), and (1)

3



V-J= −2.5 log10(FV /FJ), (2)

where F is the flux in the given band. In the two rest frame color cata-
logs, the U, V, and J fluxes are labeled with the headers L153, L155, and
L161, respectively. Lastly, in 3(a), the header z peak gives us our desired
redshift values. All these headers will prove very important in a later sec-
tion, when we work on sorting this large catalog into a selection of distant,
massive, quiescent galaxies.

Reading in Catalogs

In order to make all these files available in your Python code, you first
must read them in using the ascii package from astropy. This program reads
in files based on their catalog paths using the command ascii.read. In order
to use this you have to import the programs using the following lines of code
at the beginning of your program (the importance of numpy will be discussed
later on):1

import numpy as np

from astropy.io import ascii

Once this has been done, you must define the path of each folder. It is
imperative that this is done right, or astropy will not be able to locate
your file. If you are unsure of the path of a folder enter the command
pwd into the terminal while in that folder. In this tutorial, the exam-
ple path of “cosmos-1.deblend.v5.1” will be “/home/user/tutorial/cosmos-
1.deblend.v5.1/”. Since there are multiple folders that our files are located
in, we must establish multiple paths. To do so, simply assign an arbitrary
variable to the desired path, like the one above. Example code to define
paths is shown below.

pathphoto="/home/user/tutorial/cosmos-1.deblend.v5.1/"

pathcolor="/home/user/tutorial/cosmos-1.deblend.v5.1/cosmos-1.deblend.rfcolors/"

pathz="/home/user/tutorial/cosmos-1.deblend.v5.1/cosmos-1.deblend.redshifts/"

pathsps="/home/user/tutorial/cosmos-1.deblend.v5.1/cosmos-1.deblend.sps/"

1Code put in LATEX using \lstlisting command (see brief tutorial at end).

4



These lines of code define the paths to the photometric catalog, the two color
band catalogs, the redshift catalog, and the SPS catalog, respectively.

The final step of this section is to read in the files described in the previ-
ous section. The function ascii.read takes four parameters: the file location,
the data start, the header start, and the delimiter. The file location is sim-
ply path+'filename' using the paths defined above and the required files in
them. The delimiter is what separates each column of the catalogs. In every
file here the delimiter is a blank space, which can be given by delimiter=' '.
The tricky parameters are the header and data stop. Before the data begins
there are multiple lines beginning with a pound sign (#) which are comment
lines. The data start is the first non-comment line where data is located. Be
careful, as a data start=0 means the first non-comment line is the data start,
whereas data start=1 refers to the second such line. Fortunately, all of our
data starts are 0. The header start is the first comment line where the head-
ers (i.e. column titles) are labeled. This is denoted with header start=line
number. This can be confusing, so I’ve included two examples.

Figure 1: First few lines of cosmos-1.deblend.v5.1.zout file.
Headers appear on first comment line, so header start=0.
Data begins on the first non-commented line, so data start=0.

5



Figure 2: First few lines of cosmos-1.bc03.del.deblend.v5.1.fout file.
Headers appear on 17th comment line, so header start=16.
Data begins on the first non-commented line, so data start=0.

Once you have all four parameters you simply set an arbitrary variable equal
to ascii.read(file, data start, header start, delimiter). Below is the code for
our example.

gen=ascii.read(pathphoto+"cosmos-1.deblend.v5.1.cat",

data_start=0, header_start=0, delimiter=’ ’)

uvband=ascii.read(pathcolor+"cosmos-1.deblend.v5.1.153-155.rf",

data_start=0, header_start=0, delimiter=’ ’)

vjband=ascii.read(pathcolor+"cosmos-1.deblend.v5.1.155-161.rf",

data_start=0, header_start=0, delimiter=’ ’)

redshift=ascii.read(pathz+"cosmos-1.deblend.v5.1.zout",

data_start=0, header_start=0, delimiter=’ ’)

params=ascii.read(pathsps+"cosmos-1.bc03.del.deblend.v5.1.fout",

data_start=0, header_start=16, delimiter=’ ’)

With all files read in we can now proceed with sorting for these quiescent
galaxies.

Sorting and Selecting

Now that you are familiar with the contents of the COSMOS data and
the various headers and the correct files are read in, we can begin the process

6



of sorting the data. All the data we need is in the correct form, except for the
UV and VJ colors. In order to get these ratios we write code to implement
equations (1) and (2) into our program. This is where the numpy package
we imported earlier comes in handy. Using the command np.log10() takes
the logarithm of an argument, which is needed in the equations. In order to
get just the columns of flux in the U, V, and J bands from the read in files,
use brackets. For example, file['column name'] selects the column starting
with the header column name from the file read into the variable file. This is
the same in the general case and is vital in making selections. Putting these
pieces of code together gives us an array of each of the UV and VJ color
ratios the same length as a column of the parent file. For our example, recall
the U, V, and J headers are L153, L155, and L161. The resulting code is
below.

UV=-2.5*np.log10(uvband[’L153’]/uvband[’L155’])

VJ=-2.5*np.log10(vjband[’L155’]/vjband[’L161’])

From here we are ready to make selections of both older and younger distant
massive quiescent galaxies.

The first part of this is to obtain the required U-V and V-J selections
which represent quiescent galaxies. Whitaker et al. (2012)defines a quiescent
galaxy as one that falls within the region contained by

U-V> 0.8×(V-J)+0.7, (3)

U-V> 1.3, and (4)

V-J< 1.5. (5)

Figure 3 demonstrates this selection region. This plot, from Whitaker et
al. (2013), also shows a dotted line perpendicular to the line formed by
equation (3) which splits the quiescent region in to a portion of red and blue
data points. The red data points represent older quiescent galaxies, while
the blue represent more recently quenched ones. The equation for the dotted
line as given in Whitaker et al. (2013) is as follows:

U-V= −1.25×(V-J)+2.85. (6)

7

http://iopscience.iop.org/article/10.1088/0004-637X/745/2/179/pdf


If the U-V colors are below (less than) this line, the galaxies are younger
and if the colors are above (greater than), the galaxies are older.

Figure 3: U-V vs V-J colors plot with quiescent region highlighted. Red
and blue data points represent older and younger quiescent galaxies, respec-
tively. The distinction between older and younger is given by the dotted line
separating the two colors.

Whitaker et al. (2012) also details the redshift at which these galaxies
are present. The selection here is 1.4 < z < 2.2. Since we want only massive
quiescent galaxies, we restrict the log mass (lmass) to 10.5 <lmass< 12. Our
final selection is to ensure we only take data that has a use flag equal to one,
which if you recall, means the data is good and is a galaxy. The code for
making a selection is to set a variable equal to your restriction in parentheses.
For example, select = (gen['use '] == 1) makes a selection for all values of
the “use” column of the catalog assigned to “gen” that are equal to 1. To
make multiple selections, close all of your selections in square brackets and
separate each individual one with ampersands (&). For example, select =
[(gen['use '] == 1) & (redshift['z peak'] > 1.4)] selects all data with a use
flag of 1 and a redshift greater than 1.4. Applying this to all the selections

8



we want to make, we can select younger and older massive quiescent galaxies
using the following code.

young=[(gen[’use’] == 1) & (redshift[’z_peak’]>1.4) &

(redshift[’z_peak’]<2.2) & (params[’lmass’]>10.5) &

(params[’lmass’]<12) & (UV > (0.8 * VJ + 0.7)) & (UV > 1.3) &

(VJ < 1.5) & (UV < (-1.25 * VJ + 2.85))]

old=[(gen[’use’] == 1) & (redshift[’z_peak’]>1.4) &

(redshift[’z_peak’]<2.2) & (params[’lmass’]>10.5) &

(params[’lmass’]<12) & (UV > (0.8 * VJ + 0.7)) & (UV > 1.3) &

(VJ < 1.5) & (UV > (-1.25 * VJ + 2.85))]

Once our selections have been made, we can write the selected data to an
output file, which we will later edit to fit the correct CSTACK format. To
do this, we can use the f.write() command, which writes a line into an exter-
nal file that you create using f.open('cosmosyoung.txt', 'w+'). The first part
of f=open() names the output file, while the second part tells the program
what you want to do to this output file, i.e. w+ is write, a is append, etc.
In our output file we want columns of id, ra, dec, z, U-V, V-J, and lmass.
In order to create headers for these columns, we put the header names in
single quotes plus a space in quotes as the delimiter in between each header
in the argument of f.write(). In order to specify that this line of headers is a
comment line and not data, start the line with a pound sign. Lastly, put \n
after the last item to tell the program to move to a new line. The resulting
code will look like this:

f=open(’cosmosyoung.txt’, ’w+’)

f.write(’# id’+’ ’+’ra’+’ ’+’dec’+’ ’+’z’+’ ’+’U-V’+’ ’+’V-J’+’

’+’lmass \n’)

To write our data to the same file, we must loop over every the entire length
of our sorted catalog. To do this we use a for loop. Writing a for loop is
as simple as writing for i in range(len(gen['young'])):. This loop occurs over
the ith row in the range of the length of the “gen” catalog with the “young”
selection applied. This ensures that the program will loop through all rows
of data in our selection and print all of the data we selected. It does not mat-
ter which file we loop over, as they should all be the same length with the
selection applied. Indented on the line after the for loop declaration include
the f.write() command to write all of the selected data to your opened file.

9



The code to write the data from each file is str(file['header'][selection][i]).
You separate each of these terms in the same way you did the headers above,
including the \n at the end. Doing this for both older and younger galaxies
in our example yields the following code.

f=open(’cosmosold.txt’, ’w+’)

f.write(’# id’+’ ’+’ra’+’ ’+’dec’+’ ’+’z’+’ ’+’U-V’+’ ’+’V-J’+’

’+’lmass \n’)

for i in range(len(gen[young])):

f.write(str(gen[’id’][young][i])+’ ’+str(gen[’ra’][young][i])+’

’+str(gen[’dec’][young][i])+’

’+str(redshift[’z_peak’][young][i])+’ ’+str(UV[young][i])+’

’+str(VJ[young][i])+’ ’+str(params[’lmass’][young][i])+"\n")

f.close()

f=open(’cosmosyoung.txt’, ’w+’)

f.write(’# id’+’ ’+’ra’+’ ’+’dec’+’ ’+’z’+’ ’+’U-V’+’ ’+’V-J’+’

’+’lmass \n’)

for i in range(len(gen[old])):

f.write(str(gen[’id’][old][i])+’ ’+str(gen[’ra’][old][i])+’

’+str(gen[’dec’][old][i])+’

’+str(redshift[’z_peak’][old][i])+’ ’+str(UV[old][i])+’

’+str(VJ[old][i])+’ ’+str(params[’lmass’][old][i])+"\n")

f.close()

CSTACK Basics

CSTACK is an online software designed to obtain the total X-ray counts of
a group of individual objects using stacking analyses. According to Gawiser
et al. (2010), stacking analysis is used to detect faint sources by estimating
a summed signal from many individual objects. Since the signals we are
receiving have background noise, many objects that only emit a faint signal,
such as some distant AGNs, can get lost in the noise. However, because we
know the location of these objects (or objects at the same location) accu-
rately based on their signals at other wavelengths, we can average the noisy
data at each known position, resulting in an aggregate count rate. This ag-
gregate count rate is our stacked count rate. CSTACK does this for X-ray
signals using data from the Chandra X-ray Observatory. Chandra is a tele-
scope which detects X-rays from various sources, including exploded stars
and black holes. As such, Chandra’s X-ray data is very useful in identifying

10

http://cstack.ucsd.edu/cstack/
https://arxiv.org/pdf/0911.1592v2.pdf
https://arxiv.org/pdf/0911.1592v2.pdf
http://chandra.harvard.edu/about/


AGNs in our selected galaxies.

Another useful aspect of CSTACK is that it can make these X-ray stacks
for many different fields and catalogs, but most importantly, in our case,
COSMOS. Using the link above to access the CSTACK website will give
you a page with four main links. The specific software version we will be
using is “CSTACK V4.32@UC San Diego”. There will be a pop-up asking
for a username and password, but for the public Chandra data they are both
“guest”. On this page the first important inputs are the following (Fig. 4).

Figure 4: First CSTACK inputs

The important fields here are the Dataset and job ID. The dataset is the
field that the inputted data was observed in (i.e. COSMOS). There are two
COSMOS options, but the only public one is C-COSMOS, so select that.
The job ID is just what you want to call the output files, so for our example
we will use “example young” and “example old” for the recent and older
quiescent galaxies. The next important entries are the following (Fig. 5).

Figure 5: Second CSTACK inputs

This is where you select the file to upload to CSTACK and tell it which
header points to the id, right ascension, declination, weight, and redshift
data2. This is where the input files get tricky.

2CSTACK automatically detects the files as ASCII tables.

11



CSTACK Formatting

CSTACK is very specific about the ordering of columns and headers in
the files uploaded to it. The columns have to be in the order of id, right
ascension, declination, weight, and redshift exactly. To get the data in this
order you have to write another Python program that reorders the columns
and adds a weight column. This is relatively easy, and you can just follow
the above tutorial sections, just without making a selection. Basically all you
have to do is read in the cosmosold.txt and cosmosyoung.txt files you made
before and reprint them to new files (call them cstackyoung.txt and cstack-
old.txt) with only the columns above in the right order. We won’t weight any
of the data, so just set a variable weight=1 and include in in your output
string as +str(weight)+. The program will look like this.

import numpy as np

from astropy.io import ascii

path="/home/user/tutorial/"

old = ascii.read(path+’cosmosold.txt’,

data_start=0,header_start=0,delimiter=’ ’)

young = ascii.read(path+’cosmosyoung.txt’,

data_start=0,header_start=0,delimiter=’ ’)

weight = 1.0

f=open(’cstackold.txt’, ’w+’)

f.write("# id"+’ ’+"ra"+’ ’"dec"+’ ’+"weight"+’ ’+"z\n")

for i in range(len(old[’id’])):

f.write(str(old[’id’][i])+’ ’+str(old[’ra’][i])+’

’+str(old[’dec’][i])+’ ’+str(weight)+’

’+str(old[’z’][i])+"\n")

f.close()

f=open(’cstackyoung.txt’, ’w+’)

f.write("# id"+’ ’+"ra"+’ ’"dec"+’ ’+"weight"+’ ’+"z\n")

for i in range(len(young[’id’])):

f.write(str(young[’id’][i])+’ ’+str(young[’ra’][i])+’

’+str(young[’dec’][i])+’ ’+str(weight)+’

’+str(young[’z’][i])+"\n")

f.close()

12



Thus for the file upload you select cstackold.txt or cstackyoung.txt, depending
on which galaxies you want to stack and input the header names used in the
code into those boxes.

CSTACK Outputs

CSTACK can take a while to run so when you do obtain an output look
for a few things. On the “results.html” page you should see the following
output screen.

Figure 6: CSTACK results screen for recently quenched distant massive
galaxies.

The top box represents data from low energy (500-2000 electron volts) X-ray
photons and the bottom is the high energy (2000-8000 eV) photons. The
two images on the far left are FITS images (‘Flexible Image Transport Sys-
tem’), which is the standard image format for astronomy, and give a visual
representation of how clear or noisy the signal is. A clear dot in the middle
represents a good, not noisy X-ray count rate (see the image in the upper left
in Fig. 6). A fuzzy/static image means the signal is very noisy and there is
not a very precise count rate. The two plots are histograms of the frequency
of detected count rates from each individual source object from which the
mean count rate is measured. The important values to take away from this
page are the mean count rates and their error. These count rates are the

13

https://fits.gsfc.nasa.gov/


stacked X-ray count rates for all of the objects and the error is essentially
the amount of noise for these signals, or the error from performing a stacking
analysis. A good test to see if your X-ray signal is clear is to divide the
count rate by its error, which is called a signal to noise ratio. If it is greater
than one then your signal is stronger than the surrounding background noise,
meaning you have a good X-ray count rate. The six files in this table under
“Detailed Results” provide more in depth values and statistics used in the
stacking process.

The most important output result is the “stat cts [BAND].out” file, where
the [BAND] is replaced with either “500 2000” or “2000 8000” depending on
which energy band the data is for. This file contains data for each individual
object, but the most important parts are the total values at the end of the
file (see Fig. 7).

Figure 7: Final results of stat cts 500 2000.out file for recently quenched
distant massive galaxies.

The “Final Stacked Rate” is the same as the value reported on the results
screen (Fig. 6). The first row shows the number of galaxies stacking analysis
was done on. The “Total” (281) and “Accepted” (263) are the number of
galaxies in the input file (i.e. the number of galaxies that you selected to be
recently quenched) and the number of galaxies that CSTACK actually per-
formed the stacking analysis on. The “Near src” (18) refers to the number
of galaxies in your file that are near a known X-ray source, and as such are
not counted in the stacking. The “Out” (0) refers the number of galaxies
outside of the area of the sky which Chandra took data from, and these are
also not counted. Exposure time3 refers to how long a telescope (in this case
Chandra) spent taking data from a cosmological object. Longer exposure
times are better, as they provide more X-ray photons for a more accurate

3Exposure time is usually reported in megaseconds, though here it is in seconds (1 Ms=
106 s).

14



count rate. The “Total Exposure” in the file is the sum of all the individual
exposure times of each accepted object. As such, to get the average exposure
time of the data you need to divide the total exposure time by the number
of accepted galaxies.

The values in this file are essentially the goal of this entire tutorial. To
convert the count rate (and error/noise) to a flux you need an energy conver-
sion factor (ECF), which are in units of erg/cm24. Multiplying the count rates
you obtain through stacking by an ECF will give you the X-ray flux of the
group of galaxies the stacking was done on. ECFs vary by dataset and energy
band, and for COSMOS the ECFs are 7.50× 10−11 for 500-2000 eV photons
and 3.06×10−11 for 2000-8000 eV photons. Now we have completed our goal
of finding X-ray fluxes for recent and older distant massive quiescent galax-
ies. Below are the “results.html” page and “stat cts [BAND].out” file for the
older distant massive quiescent galaxies (and the “stat cts 2000 8000.out” file
for the younger galaxies), so that you can compare your final values (Figs.
8-11).

Figure 8: Final results of stat cts 2000 8000.out file for recently quenched
distant massive galaxies.

4An erg is a unit of energy equal to 10−7 Joules.

15



Figure 9: CSTACK results screen for older distant massive quiescent galaxies.

Figure 10: Final results of stat cts 500 2000.out file for older distant massive
quiescent galaxies.

Figure 11: Final results of stat cts 2000 8000.out file for older distant massive
quiescent galaxies.

16



Addendum: Syntax Highlighting in LATEX

As you may be able to tell, this tutorial was written in LATEX, which
is a word processing/typesetting software that makes scientific publication
standard documents. If you are not familiar with the basics of LATEX there
is extensive documentation online; this tutorial will not cover the basics.
However, if you are versed in LATEX, there is a command that will allow you
to write code with syntax highlighting like I have done above. To do this
write the following in the preamble.

\usepackage{listings}

\lstset{frame=tb,

language=Python,

aboveskip=3mm,

belowskip=3mm,

showstringspaces=false,

columns=flexible,

morekeywords={as, write, close},

deletekeywords={del},

basicstyle={\small\ttfamily},

numbers=none,

identifierstyle=\color{black},

numberstyle=\tiny\color{gray},

keywordstyle=\color{blue},

commentstyle=\color{cyan},

stringstyle=\color{pink},

breaklines=true,

breakatwhitespace=true,

tabsize=3

}

The above are the set parameters I used for my document, though you can
easily change these based on what language or syntax highlighting you want.
The important parameters are the language, more/deletekeywords, and all of
the styles. The language is obviously the coding language that you are typing
in (e.g. Python in this tutorial). This affects what keywords and standard
formatting are applied to the syntax highlighting. The more/deletekeywords
parameters either add extra keywords to the standard set of the language or
deletes keywords from the set. The style parameters affect the size, color,
and font of certain elements of the code, like keywords or strings. To actually
input the code into your LATEX file do the following.

17

http://www.latex-project.org/


\begin{lstlisting}

Type code here

\end{lstlisting}

The code you type will automatically have its syntax highlighted.

18


