
Mohammad Ashas

Python Tutorial: Comparing Data from Different
Catalogues Using Sky Coordinates

Abstract
Different catalogs of observational data with overlapping observation can be compared to check how
accurate the photometry is. To be able to compare the photometry, one must first cross-match the catalogs
by determining whether the right ascension and declination of the observed objects are within a certain
match radius in both catalogs. Finding these spatially coincident matches suggests that the observed
objects are the same physical sources in both catalogs. This can be done quickly using Sky Coordinates
and a for-loop in Python. In this tutorial, we compare 3D-HST GOODS-South field catalog to the Hubble
Space Telescope Legacy (HLF) catalog1.

Introduction
The goal of this tutorial is to show how to use Sky Coordinates and for-loops to compare flux

data from two different catalogs, also introducing some of the basics of python in the process. Flux is the
amount of light that falls on an area of the telescope lens. This data can be used to calculate the
magnitude of celestial objects in the universe. By comparing the magnitude of celestial objects from
different data sets we can confirm the location of objects in the night sky.

Sky Coordinates is a python utility which can be imported to make it easier to compare on-sky
objects positions from different catalogs through the right ascension and declination. The right ascension
and declination can be thought of like the x and y points of a graph but in terms of the night sky. Sky
coordinates can use several different coordinate reference frames but in this tutorial we will be using
International Celestial Reference System (ICRS) which is used by International Astronomical Union. By
matching right ascension and declination from different catalogs but the same filter (same wavelength of
light being transmitted) it is possible to determine how viable the data is.
 The for-loop part of this tutorial is actually just a method used to shorten the amount of code
needed to complete a task by instructing python to repeat the same lines of code with respect to a variable.
In this case, the task is comparing the two catalogs with several different filters at the same time instead
of going through each of the filters separately and the changing variable will be the filters. The for-loop
will be used to formulate the magnitudes and the difference between magnitudes observed by different
filters, organizing the results into easily understood scatter plots. The scatter plots will allow for the
visualization of catalog data and confirmation within a range of error the position of stars and galaxies in
the night sky.

Data
The files needed to complete this tutorial can be found on the following links:
http://3dhst.research.yale.edu/Data.php (Under the Photometry tab)
https://www.dropbox.com/sh/bwkqzmbfx9oc10h/AADYa7YjEzUW0575vTuCmYdDa?dl=0

Method
1. To begin comparing catalogs you must first import in a couple of utilities from astropy and

matplotlib. This will allow python to perform certain functions like make graphs and organize
data into tables. The utilities from astropy.table allow for data to be organized into tables and
columns. The utilities from matplotlib.pyplot enables python to make plots and graphs as well as
perform functions that would enhance the atheistic appeal of the plots and make the data more
understandable. The numpy utility can be used to organize into arrays which can then be
manipulated and used to calculate a wide variety of functions, including mathematical operations
such as running mean and median. (An array is a data structure that stores values of same data
type). The ascii import from astropy.io allows python to read in data from ascii files (which is
mentioned later on). Note: I always like to import these utilities whenever starting a new python
document. It is a good starting point and generally comes in handy.

http://3dhst.research.yale.edu/Data.php
https://www.dropbox.com/sh/bwkqzmbfx9oc10h/AADYa7YjEzUW0575vTuCmYdDa?dl=0

Mohammad Ashas

!

2. Now to let python know where the catalogs we want to use are we must define a variable
describing the full path location. Note: The easiest way to create a variable like this would be to
save the file you want to access on the desktop that way all you have to input is catalog_path =
“desktop/name of file/” but python can access the file anywhere as long as the input is correct.
Also the Prelim Catalog refers the HLF files.

!

3. To be able to access the data from the catalog we must read in the specific file we want to analyze
into python. Note: It is good to realize that there are a quite a few different types of files and
slightly different ways of reading them in. In this case we have an ascii file so in the code there is
a ascii.read(….), However, in the case of .fits files you would want to use Table. Read(…). Also
you can see now why we imported ascii in the first code input. In general using the ascii and fits
method is a good first step in trying to read in a catalog. However, files can be named very
differently depending on who is creating them. In this case, we have .cat and .nzpcat file but these
are not standard names in any way.

!

4. To check if the files were read in properly, input print (filename). Note: It is always a good idea
to make sure the file was read in properly, also this is a good way to get a visual of how the
catalogs are structured.

!

Mohammad Ashas

!

5. Just like before we need to import more utilities from astropy so python will be able to run the
code we will input later on. The utilities being imported allow us to use sky coordinates and
some of its specific features. Note: I am importing these utilities now instead of before as a way
to show some utilities like the ones above are used a lot more generally than these utilities which
are for our specific task.

!
At this point in the code all of the setting up for actually comparing the two catalogs is done. The
catalogs have been read in and all the necessary utilities have been imported.

How to Cross-Match Photometry in a Single Filter:

6. We are finally at the point where we are using sky coordinates program to compare the two
catalogs. The basic idea is that we are trying to find stars and galaxies that are in the same on-sky
location by checking if their right ascension and declination is the same in the two catalogs
(basically x and y position). If a star or galaxy is found in both catalogs with the same or similar
right ascension and declination it could imply that it is the same object. In the following code ra
is right ascension and dec is the declination. c1 and c2 are the name of the catalogs that are
being compared. The keyword frame just tells the program what coordinate system python
should use. In our case the coordinate system is International Celestial Reference System. The
idx are indices into c2 that are the closet objects in coordinates in c1. The d2d is the on sky
distance between the two objects and the d3d is the distance between the object in 3 dimensions.
The 3 dimensions being the right ascension, declination, and the depth (redshift). The coordinate
system we use in this step must match the coordinate system of the input catalog. The last line of
code tells python which catalog is matched to the comparison catalog. In our case, catalog 2
(HST) is matched to catalog 1 (Prelim_Catalog). Basically, python is going through every single
ra and dec in catalog 1 and finding the radial distance to the closest object. Note: In this case
there is no data for the third dimension however the d3d does not affect the resulting matched
catalogs and it seems to be an error if the d3d is not included so we just keep it. This could just
be how the imported sky coordinates utility works.

!

Mohammad Ashas

7. In this step, we need to put some restrictions on the code so that if there are actually any matches
between the catalogs we can be sure they have significance. For example, the radius tells python
how close the ra and dec must be to be considered a match in units of degrees.
match_index[selection] = -99 makes it that so every ra and dec not within the match radius is
equal to -99. Note: selection is just a restriction we can make. In our case, the selection dictates
that the d2d (distance to the closest object) is greater than the radius defined before it. Writing in
match_index[selection] just applies the selection defined before to the match index.

!

8. In this step, we are testing whether or not our sky coordinate code is working properly with only
one filter as a test. The filter which is being used the f_f160w and is being labeled as j so it can
be automatically replaced throughout the formulas below. The overall goal of this test is to
calculate the del_mag and the mag (delta magnitude and magnitude). The magnitude is the
brightness of the objects with respect to the flux recorded by the telescope used during
observation. In this case, the mag calculated in the last line of code will be of the
Prelim_Catalog filter. The delta magnitude is the magnitude of the Prelim_Catalog filter minus
the magnitude of the same filter of the HST catalog. The del_mag code is taking objects with
very similar ra and dec from both catalogs and subtracting their magnitudes, the closer the
del_mag is to zero the higher the chance of the objects in the two catalogs are actually the same.
ind and ind2 are selections to make sure we eliminate bad data and don’t get any undesirable
results. ind removes all -99 place holders in the calculation and ind2 removes the negative flux
which would cause an error if you try to take the logarithm of a negative value. The
match_index is placed on the HST side to tell where in the original catalog the corresponding
physical object is located, eliminate unmatched objects and also making the sizes of the columns
the same. It is not placed on the Prelim_Catalog side because the HST catalog is being matched
to the Prelim_Catalog. Note: the selection has to be put in the shown order or it won’t work
properly. Ind is part of ind2 so python has to read in first. Also you might be wondering what is
the -2.5*log10(flux) is for. This is to convert the data from each filter to the AB magnitude scale
in this case. In fact, there should also be a (+25) constant on the end of the formula but it cancels
out because of the negative sign in the formula so to make everything a little simpler it is
excluded. Different catalogs might need to be converted into the AB magnitude scale using
different constants (called a “zero point”) at the end, so they might not cancel out. Forgetting the
constant might cause slight errors that can be easily overlooked.

!

9. To make sure the code worked we can print mag and del_mag. Note: This is not necessary but it
is always good check to make sure the data is looking good. You don’t want to find out a lot later
that the formula did not give the proper results. The typical range of magnitudes is 15-28, and the
typical offsets between the magnitudes between the two catalogs is at least within +/- 1
magnitude (corresponding to a factor of 2.5 difference in the respective fluxes).

Mohammad Ashas

!

!

How to Cross-Match in Multiple Filters:

10. In this step, we create a list of all of the Hubble Space Telescope filters that are available in both
catalogs and create a for-loop to calculate the del_mag and mag for all of the seven filters. The
code in the for-loop (under “for a, i in enumerate(list):”) is exactly the same as the test code we
made in step 8. Under that code, we next make a subplot graph of every filter in the for-loop.
This is done to give a visual representation of the data. It is a lot easier to interpret the data with
the use of graphs. “sub.1 = fig.add_subplot (4,2, a+1)” is the line that actually sets up the
graphs. The (4,2) tells python that subplot is 4 rows x 2 column panels and the a+1 is what tells
python to change the location of where the data is being displayed for each sub panel. The rest of
the code is telling python what type of graph we want, the limits on the x and y axis and the axis
labels. The for-loop may seem very complex but it can be broken down to fairly simple
components. For example, the “for a,i emumerate (list):” is what tells python that a for-loop is
beginning and anything indented after this is point is part of the for-loop. The a and i are the
changing component. Throughout the code you see [i]. This loops through the values of the ‘list’.
In this case the ‘list’ consists of the seven filters. Instead of writing the same code seven different
times the for-loop can run the same code seven times just changing the [i] to a different filter
name provided in the list. The [a] in the code is used to index the list so the list array is easier to
manipulate. Indexing is a method of marking the position of the components of an array, in this
case the array is the list. The array’s components are “zero-indexed”, which means they are
numbered from 0 to one less than the total number of components in the array. In the case of this

Mohammad Ashas

for-loop, the [a] does something very similar to the [i] but instead of changing the filter name it is
used to change the sub panel where the data will be displayed. This is done by changing the
assigned position number of each of the filters and matching it with the equivalent sub panel
number. The enumerate (list) is telling python to look to the list = […] for the changing [a] and
[i]. Note: we assume here that the filter names must be exactly the same in both catalogs. Ind2 is
in the for-loop but ind is placed outside the for-loop. This is because ind2 has to be applied to all
of various filters but it does not matter whether or not ind is applied to all the filters because it is
only setting up the match index, which will rule out all data that doesn’t fall under the match
radius. a is in reference to the plot sub panels, so when plotting a graph like ours we must use
“a+1” instead of just “a” because in python “a” starts off from 0 and not 1. If we had put “a”
instead of “a+1”, python wouldn’t be able to understand what a=0 is and it would get stuck at
the first filter.

All the work done until now has been to plot the seven graphs below. As you can probably already tell
from the code, the x-axis is the magnitude of the Prelim_Catalog filter which is used as reference and the
y-axis is the difference in magnitudes of the two catalogs in the respective filter. Each point on the graph
is either a star or a galaxy emitting light. The brightest objects have lower magnitudes. The delta
magnitude being closer to zero suggests that the magnitude of the object in the match radius of both
catalogs were the same or very close to each other. This not only confirms that the observed star or
galaxy is the same in both the catalogs, but that the independently measured fluxes are in good agreement.
Stars and galaxies that are dimmer (larger magnitudes) have a larger scatter in their delta magnitudes.
This does not necessarily suggest that we have mis-matched these objects, but rather when we measure
the fluxes of very faint objects close to the noise limits of the image there will be a larger measurement
uncertainty. This makes sense if you think about it. The dimmer the stars and galaxies are, the harder it
would be for the telescope to accurately measure the flux, which could lead to small errors and
differences between the catalogs due to observation at different time and positions, leading to a larger
delta magnitude.

Mohammad Ashas

Conclusion

To reiterate, the validity of any two catalogs of observational data like the 3D-HST GOODS-
S and HLF catalogs can be checked by figuring out if there are any observed stars or galaxies
with the same right ascension and declination within a certain pre-determined match radius
over a variety of different filters. This process allows us to strengthen the validity of the
photometry of the catalogs by confirming the position of celestial objects in the night sky
leading to more accurate the trustable results when being used in different experiments.

References

1https://archive.stsci.edu/prepds/hlf/
http://matplotlib.org/users/pyplot_tutorial.html
https://www.tutorialspoint.com/python/python_for_loop.htm
https://wiki.python.org/moin/ForLoop

http://matplotlib.org/users/pyplot_tutorial.html
https://www.tutorialspoint.com/python/python_for_loop.htm
https://wiki.python.org/moin/ForLoop

