Python tutorial - Looking for Mergers using Statmorph

April 4, 2023

Ananya P. Sreelekha
Advisor: Dr. Katherine E Whitaker

1 Abstract

The purpose of this Python Tutorial is to intoduce statmorph to help perform statistical analysis
on galaxy morphology. In particular, we will be demonstrating how to extract the Gini and Mag
statistics and use it to make a Gini (x-axis) vs. My (y-axis) plot (Lotz et al. 2004) to identify
galaxy merger population. This is done by implementing a simple for loop to iterate over all
the selected items in the catalog. Major mergers can result in a period of rapid star formation
(starburst), followed by a shut down in star formation rates making the galaxies quiescent. In
this tutorial we make a selection of galaxies by first creating a U-V vs V-J color plot to pick out
quiescent galaxies (Whitaker et. al 2012), and next use Gini - My mergers to determine if they
are mergers. Mergers comprise one viable pathway to quiescence.

2 Introduction

The James Webb Space Telescope (JWST) is 100 times more powerful than the Hubble Space Tele-
scope (HST), capturing higher resolution and deeper images of galaxy morphologies. Morphological
analyses are therefore more reliable and large samples enable us to implement statistical analyses
to quantify morphology. This tutorial uses an in-house photometric catalog of the Cosmic Early
Evolution Release Survey (CEERS) which is an extragalactic survey that covers 100sq arcmins of
the Extended Groth Stip (EGS) field with JWST imaging and spectroscopy in NIRCam, NIRSpec
and MIRI. Here we use statmorph, an affiliated package of astropy to perform non-parametric
morphological diagnostics on galaxy images.

The morphology of a galaxy can give us a lot of information about its evolution history and
composition. Mergers are one way by which galaxies evolve. The effects of a merger are evident
in a galaxy’s morphology that can be seen as tidal tails formed by gravitational disturbances,
asymmetry in shape, a range of radial light profiles etc. Gini coefficient is a statistic used in
economics to describe the wealth distribution among a population. We use the same statistic
in astronomy to describe the distribution of flux throughout the galaxy. My statistic (Lotz et
al. 2004) measures the second moment of a galaxy’s brightest regions, containing 20% of the total
flux, relative to the total second-order central moment. Plotting Gini coefficient vs My (eg. Fig.
X in Lotz et al.2004) for the galaxies can help us easily distinguish mergers from non mergers.

Ellison et al. 2022 show that galaxy mergers can lead to a shut down in star formation (quiescence)
after a brief period of rapid star formation (starburst). Quiescent galaxies can be distinguished

from star forming galaxies by plotting a U-V vs. V-J diagram. The U-V color is the difference
in magnitude of restframe ultra-violet (U) (0.36 microns approx) and visual (V) (0.55 microns
approx) bands and V-J is the difference in magnitude of restframe visual and infrared (J)(1.2
microns approx.) bands. While most star forming galaxies are bluer, sometimes the star forming
regions can be dust obscured making it appear redder. Galaxies can also be reddened by old age
and quiescence. A UVJ plot is a robust way of distinguishing red quiescent galaxies from dusty star
forming galaxies (Fang,J et al.2018). Mergers can usually explain the presence of large quiescent
galaxies at the redshift of 1 < z < 2 (Bruce et al. 2012). Therefore, after applying our initial
selection of quiescent galaxies make an additional selection for galaxies at a redshift range of 0.5 <
z < 2.5 and with a solar mass of 10'° or greater.

This tutorial starts by making a selection of galaxies based on Whitaker et al. 2012 after plotting
a U-V vs. V-J diagram for all objects in the CEERS catalog that is at a redshift(z) of 0.5 < z < 2
and a mass of 10'°. After noting their object IDs in the catalog from the U-V vs. V-J plot, we use
the ID list of quiescent galaxies to plug into statmorph, which will generate Gini and Mag values
to make a plot.

3 Data

The data used in this tutorial can be found under the google drive link to our internal CEERS cata-
log: https://drive.google.com/drive/folders/1T5YZiy1UJOkBgRCIREmAqhSyd7Zk{F4k?usp=share_ link

Filenames:

Science image : ceers-full-grizli-v4.0-f444w-clear_drc_ sci_skysubvar.fits [805.3MB]
Photometric Catalog : LW_ £277w-f356w-f444w__ SCIREADY__CATALOG fits [9.3MB]
Redshift Catalog : ceers. LW 160w _v4.zout.fits [17.3MB]

Segmentation map : LW_ £277w-f356w-f444w_ SEGMAP fits [805.3MB]

Weight map : ceers-full-grizli-v4.0-f444w-clear drc_ wht.fits [314.5MB]|

Point spread function : psf ceers F444W_ 4arcsec.fits [86KB|

We can use other extragalactic catalogs, just make sure they have the standard information on the
coordinates, mass and photometric data (rest frame U, V and J magnitudes, redshift). Here is a
link to other 3D HST catalogs. Information about photometric data can usually be found in the
header of the file. Header information can be viewed by opening the file using a text editor (not for
.fits files). For .fits files, the header information can be accessed by following the steps listed
in step 2 under the Method section.

Note: If you need to utilize more than one catalog file to get all the information needed for this
tutorial, make sure to check that the number of objects in the catalog and object id match

4 Method

1. Before we start using the data from the catalog, import necessary utilities from astropy,
statmorph and photutils for data visualization, analysis and photometry. General mod-
ules such as numpy to store/create values into arrays for easier data manipulation, pandas
for handling dataframes and matplotlib.pyplot for plotting also need to be imported. A

https://archive.stsci.edu/prepds/3d-hst/

[1]:

short description of why these statmorph and astropy packages are useful and link to the
documentation are listed below:

source_morphology from statmorph : function that runs morphological diagnostics on
galaxy images

astropy.units : for handling units and unit conversions

astropy.wcs : required for World Coordinate System (WCS) transformation between
one set of coordinates to another.

astropy.table : provides functionality for storing and manipulating heterogenous ta-
bles

simple_norm from astropy.visualization : normalization class used to display images
on Matplotlib

models from astropy.modeling : for making models from a class of previously defined
models

convolve from astropy.convolution : convolve arrays with kernel (with interpolation
for wherever there are NaN values)

Cutout2D from astropy.ndata : used for creating cutouts of an image file

fits from astropy.io : helps handle fits files

general modules

import
import
import
import
import

numpy as np
pandas as pd

matplotlib.pyplot as plt

photutils

scipy.ndimage as ndi #for multidimensional image processing

statmorph
import statmorph
from statmorph import source_morphology

#astropy packages

import astropy.units as u

from astropy.wcs import WCS

from astropy.coordinates import SkyCoord

from astropy.table import Table, Column , join
from astropy.visualization import simple_norm
from astropy.modeling import models

from astropy.convolution import convolve

from astropy.nddata import Cutout2D

from astropy.io import fits

package to suppress warnings in functions (use if needed)

import warnings

%matplotlib inline

2. Load in data files, including catalog, segmentation map, weight map and point spread func-
tion (psf) using fits.getdata(filepath/filename). An example for filepath could be

https://statmorph.readthedocs.io/en/latest/api.html
https://docs.astropy.org/en/stable/units/index.html
https://docs.astropy.org/en/stable/wcs/index.html
https://docs.astropy.org/en/stable/table/index.html
https://docs.astropy.org/en/stable/api/astropy.visualization.mpl_normalize.simple_norm.html
https://docs.astropy.org/en/stable/modeling/models.html
https://docs.astropy.org/en/stable/api/astropy.convolution.convolve.html
https://docs.astropy.org/en/stable/api/astropy.nddata.utils.Cutout2D.html
https://docs.astropy.org/en/stable/io/fits/index.html

[2]:

[3]:

/Users/Guest/Documents/Lab. If the files are saved in a different folder than the Jupyter
Notebook, you WILL NEED TO give the file path for each of the data files. For example If it
is one directory above we can use ../filename. We need one more file that contains Header
Data Unit List (HDUL) for the catalog fits file. The HDUL usually has information about
headers and contents can be viewed by running hdul.info ().

Note: For catalog files, we mneed to wuse Table.read(filepath/filename) even though
these files may may be saved as a .fits extension. An alternative way is to wuse
ascii.read(filepath/filename). In the code below I only use filenames as this Jupyter Notebook
was saved in the same directory as the files

hdul = fits.open('ceers-full-grizli-v4.0-f444w-clear_drc_sci_skysubvar.fits')
ceers = Table.read('LW_f277w-f356w-f444w SCIREADY CATALOG.fits')

ceers_z = Table.read('ceers_LW_£f160w_v4.zout.fits')

seg = fits.getdata('LW_f277w-£356w-f444w_SEGMAP.fits')

wht_map = fits.getdata('ceers-full-grizli-v4.0-f444w-clear_drc_wht.fits')

psf = fits.getdata('psf_ceers_F444W_4arcsec.fits')

]

(]

-
Il

hdul[1] .data #science image
w = WCS(hdul[1] .header) #header information

3. After data files are read/loaded you can try printing the first few rows to examine its contents
and column names. We can print just the column names to check if the catalog contains the
values we need for analysis. If some values are split between 2 files, we need to make sure the
length and object IDs match for the files. This can be done with len(filename) and then
printing out just the column with the object ids in both files.

Note: Although this step may seem trivial, it helps to get a good idea of how the catalog is structured.
For example, printing the column names will be useful in the next steps when we slice the data
based on the quantities in each column

print catalog to check
print(ceers_z[0:5]) #catalog with redshift values
print(ceers.columns) #print only column header

id ra - ABSM_274
deg
1 214.92376581009228 .. inf .. inf
2 214.91865978302255 .. -- .. -4.419780331242023
3 214.91774449179488 .. -15.903354580345862 .. -17.474210674706214
4 214.9171840298942 .. -15.694146914049881 .. -18.178157610461014

5 214.91703042102276 .. -— .. -
<TableColumns names=('id','x','y','ra','dec','ebv_mw', 'faper_f444w', 'eaper_f444u
','f_f43bw','e_f435w','f_f606w','e_f606w','f_f814w','e_£f814w','f_f105w','e_£f105w
','f f12bw','e_f126w','f_f140w','e_£f140w','f_f160w','e_£f160w','f _f1l1bw','e_f11bw
','f_f150w', 'e_f150w','f_f200w','e_f200w','f_£f277w','e_f277w','f_f410m','e_£f410m
','f_f356w','e_£366w','f_f444w','e_f444w','tot_ekron_F444vw','tot_cor','z_spec','
star_flag', 'kron_radius','a_image','b_image', 'theta_J2000', 'flux_radius', 'use_ph

ot')>

[4]: | #Get length of files
print(len(ceers))
print(len(ceers_z))

25172
25172

[6]: #print column with object %d
print(ceers['id'] [0:3])
print(ceers_z['id'][0:3])

id

s W -

. Define selection for redshift range and mass. We will use redshift of 0.5 < z < 2.5 and a mass
of 109 solar masses or greater. These values are reasonable because massive (>10' solar
masses) quiescent galaxies around 1 < z < 2 are explained by mergers (Whitaker et al.2012)
and we want to select galaxies around this range.

Note: The selection also includes ceers[use_phot==1] which will filter out all the unreliable
objects.

[6]: # selection based on redshift and mass, include ceers[use_phot==1] to avoid,
—unreliable data
selection = (ceers['use_phot'] == 1)&(ceers_z['z_phot']>0.
—5)&(ceers_z['z_phot']<=2.5)&(ceers_z['mass']>=1e10)

5. Compute U-V and V-J values by using restframe U, V and J data from catalog. These are
given in columns ['restU'],['restV'] and ['restJ'] columns respectively. We will first
convert the values to magnitudes and find U-V and V-J color. The formula for difference in
magnitude is given by:

mi1 — My = —2.510910%

Note: There may be divide by zero warnings, it is possible to supress them by writing
warnings.filterwarnings("ignore")

[7]: warnings.filterwarnings("ignore")
U_V = -2.5*np.loglO(ceers_z['restU'] /ceers_z['restV'])
V_J = -2.5*np.loglO(ceers_z['restV']/ceers_z['restJ'])

[8]:

[9]:

[10]:

[10]:

5. Define selection for quiscent galaxy as given in Whitaker et al.2012. The function takes in
U-V and V-J (arrays) and classifies them as quiescent (1) or star forming (0). After applying
the selection function, we will have a sample of galaxies to run on statmorph, and we can
quickly visualize it using a scatter plot of U-V (y-axis) vs. V-J (x-axis).

function to select quiescent galazies
def sel_quiescent(u_v,v_j):
out = np.zeros(len(u_v))
crit_wil2 = (u_v > (0.8 *x v_j + 0.7)) & (u_v > 1.3) & (v_j < 1.5)
out[crit wi2] = 1
return out

use quiescent function defined in the previous cell
sel_q = sel_quiescent(U_V,V_J)

plot to visualize quiescent selection
plt.figure(figsize=(5,5) ,dpi=400,facecolor="'white')

plt.scatter(V_J[selection&(sel_q==0)]1,U_V[selection&(sel_g==0)],alpha=0.2,
—color='b',label="SFG')

plt.scatter(V_J[selection&(sel_qg==1)],U_V[selection&(sel_g==1)],alpha=0.2,
—color='r"',label='Quiescent')

plt.xlabel('V-J',fontsize=14)

plt.ylabel('U-V',fontsize=14)

plt.title('U-V V-J selection for CEERS',fontsize=14)

plt.axis('square')

plt.x1im([0,2.5])

plt.ylim([0,2.5])

plt.grid()

plt.legend()

<matplotlib.legend.Legend at 0x7£78d1346af0>

[11]:

[12]:

U-V V-] selection for CEERS

2.5
8 e & 4
2.0 1 5 . ®
] : A SOQO
,P.?:h.;“rhg 0® & ¢
‘ (e) = :%": []
1.5 SRS F GAXN
§° oS Bl Ve
:? Q$) qai o)
- ¢ @) DL ®)
o ¢ S® S
1 o _ D 2 OO A)‘Q&é
. 5 X
o @SS EoPo °
QéQ = 2 o
vees ARG
i @& ® (_’\
05 - “’P G)
@
8% SFG
Quiescent
0.0 T . T .
0.0 0.5 1.0 1.5 2.0 2.5

6. Grab object IDs of the sources from the catalog that are identified as quiescent.

list of object IDs of quiescent galazies
objid = ceers['id'] [selection&(sel_g==1)]

7. Run the objects selected above on source_morphology function by statmorph by iterating
through all the objects using a for loop. Make empty lists for the storing the Gini and
Moy values returned by the source_morphology function. The function also returns the
flags for sersic parameters, and flag_sersic==1 indicates sersic parameters computed are
less reliable. This value is usualy 1 in the case of mergers because the function breaks when
there is an irregular morphology. So storing the flag_sersic will increase will help check

reliability.
gini = []
m_20 = []

flag_sersic = []

8. We create a for loop that will go over each object ID one by one. The source_morphology
function also takes in the segmentation map, weight maps and psf as arguments. A segmen-
tation map has values for every pixel equal to the ID that indicate if pixel is a detected source

[13]:

or a background pixel. The weight map gives the 1/variance (%) value for each pixel. The

psf is used to correct images for the spreading of light when light enters the telescope and hits
the detector. Inside the loop, we make a cutout for each object with a box size of 5 arcsecs?.
The cutout size and region should be matched for the weight map, segmentaion map and
the psf. Due to the cutout size and region, the segmentation map may end up throwing an
error so to avoid this, we set all pixels to 0 (indicates background). The Gini coefficient, Mo
and flag_sersic are stored in a pandas dataframe. The try and except conditions have
been implemented to resolve the non-finite value error that is produced due to issues with the

segmentation map.

Note: I highly recommend using the ignore warnings code commented out in the beginning of the
cell to avoid being spammed by failed sersic fits. You are also free to create lists of other statistics
that the code returns. This happens very often (almost every other fit) due to the fact that sersic

fits are often unreliable in the case of merger candidates

#warnings. filterwarnings ("ignore")

i=0

for ob in objid:
print (i)
i+=1

obj = ceers[ceers['id']==0b]
pos = SkyCoord(obj['ra'],obj['dec'])
image = Cutout2D(sci,pos,5*u.arcsec,wcs=w).data
objseg = Cutout2D(seg.copy() ,pos,5*u.arcsec,wcs=w) .data
wht = Cutout2D(wht_map.copy(),pos,5*u.arcsec,wcs=w) .data
some objects tend to return a non—-finite walue error due to the,
—~segmentation map. So, we will try running
#source morphology, and t1f there ts an error, skip to the next if there is,
—a non-finite value error
try:
source_morphs = statmorph.source_morphology(image, objseg, label=ob,
—weightmap=wht, psf=psf)
morph = source_morphs[0]
gini.append (morph.gini)
m_20. append (morph.m20)
flag_sersic.append(morph.flag sersic)
except:
print('Cannot do it!')
#set a constant error walue for Gini and M20 whenever there fit cannot
—~be done, and
#set flag to 1 to indicate bad fit
gini.append(-99)
m_20.append(-99)
flag_sersic.append(1)
continue

2
Cannot do it!
3
Cannot do it!

18
Cannot do it!
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
Cannot do it!
36
Cannot do it!
37
38
39
40
41
42
43
44

45
46
a7
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Cannot do it!
65
66
67
68
Cannot do it!
69
70
71
72
Cannot do it!
73
T4
75
76
77
78
79
80
Cannot do it!
81
82
83
84
85
86
87
88

10

89
90
91
92
93
94
95
96
97
98
Cannot do it!
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
Cannot do it!
115
116
117
118
Cannot do it!
119
120
121
122
123
124
125
126
127
128
129
130
Cannot do it!
131

11

[14]:

[14]:

[15]:

[16]:

print table created
table = pd.DataFrame({'object_id':objid, 'gini':gini, 'M_20':m_20,'flag_sersic':
— flag_sersicl})

table

object_id gini M_20 flag_sersic
0 173 0.393321 -0.742974 1
1 1094 0.741822 -0.472583 1
2 1156 -99.000000 -99.000000 1
3 1326 -99.000000 -99.000000 1
4 1348 0.580671 -0.978229 1
127 24771 0.420904 -1.044237 0
128 24894 0.450245 -0.745930 1
129 24944 0.537971 -1.733450 1
130 24968 -99.000000 -99.000000 1
131 24996 0.543428 -1.637970 0

[132 rows x 4 columns]

8.

The merger population can be differentiated by the Gini — Mag values given in Rodriguez-
Gomez et al.(2019). The source_morphology automatically computes this as a statistic given
by morph.gini_m20_merger. The reason Gini and Mag values are stored as separate arrays
is so that we can generate a plot from it. The code below is used to draw the line between
mergers and non mergers.

merger vs non-merger cutoff
merger_sel = (table['gini'] > (-0.15%table['M_20'] + 0.33)) #merger
n_merger_sel = (table['gini'] <= (-0.15%table['M_20'] + 0.33)) #non merger

9.

The Gini vs My plot! The plot shows that the quiescent galaxies with merger signatures are
on the top left half of the plot. Now that we have identified the mergers by visualizing it in a
plot, it is time to use their object IDs to perform further morphological analysis by plotting
the Gini vs Moy values obtained from statmorph.

cutoff = np.arange(-3,-0.5,0.01)*(-0.15)+0.33

plt.
plt.

plt.

figure(dpi=500,facecolor="white"')
scatter(table['M_20'] [merger_sel],table['gini'] [merger_sel],color='purple',
alpha=0.3,label="'Merger = '+str(len(table['M_20'] [merger_sell)))

—scatter(table['M_20'] [n_merger_sel],table['gini'][n_merger_sel],color='teal',

alpha=0.3,label="'Non merger =

—'+str(len(table['M_20'] [n_merger_sell)))
plt.plot(np.arange(-3,-0.5,0.01),cutoff, 'k—-"')
plt.title('$Gini$ vs. M_{20} plot for Quiescent Galaxies (0.5 <z< 2.5)')
plt.xlabel('M_{20}"')
plt.ylabel('$Gini$ Coefficient')

12

[16]:

[17]:

[17]:

plt.x1im([-0.5,-3])
plt.ylim([0.3,0.8])
plt.legend(loc='lower right')

<matplotlib.legend.Legend at 0x7f7778a30250>

Gini vs. Myq plot for Quiescent Galaxies (0.5 <z< 2.5)

0.8
/”’
/”
-
0.7 - -~
. _-
/”
4+ ’/’
3 -7
S 0.6 A ”,/
t ”
8 ,’}/‘O ¥
@] ,/’ ®
g 05 T ‘% w L ”’/’ a
Y X
Se%
0.4 5 0
e Merger = 41
Non merger = 91
0.3 1 1 1 1
-0.5 -1.0 -1.5 -2.0 -2.5 -3.0
M>o

10. An example quiescent merging galaxy from the object list is shown below. The code is entirely
adapted form the statmorph tutorial (under ‘Examining Sersic profile’).The Original
image shows 3 galaxies merging. After subtraction of the fit for the target galaxy, we can see
the some tidal effects in the residual. We can plot the same for other objects in the list to
look at the morphology of merging galaxies.

#Print out object IDs of merger candidates
table['object_id'] [merger_sel]

1 1094
4 1348
6 1822
7 1824
8 1854
9 2040
11 2333
14 3263
26 5467

13

https://statmorph.readthedocs.io/en/latest/notebooks/tutorial.html

27 5620

32 6250
43 8384
44 8498
48 9242
49 9243
52 9469
56 10405
57 10622
58 10746
61 12687
62 13084
65 13803
73 15630
77 16572
79 17112
81 17191
84 17858
87 18851
89 19038
92 20109
93 20245
97 20953
104 21599
105 22003
109 22729
111 22968
112 23056
116 23602
122 24379
124 24476
128 24894

Name: object_id, dtype: int64

[18]: | #Source_morphology on a sample merger candidate
object_id = 16571
size = b #set the size of the cutout
obj = ceers[ceers['id']==object_id]
pos = SkyCoord(obj['ra']l,obj['dec'])
image = Cutout2D(sci,pos,size*u.arcsec,wcs=w).data
objseg = Cutout2D(seg.copy(),pos,size*u.arcsec,wcs=w).data
wht = Cutout2D(wht_map.copy(),pos,size*u.arcsec,wcs=w).data
segcopy = Cutout2D(seg.copy(),pos,size*u.arcsec,wcs=w).data
#mask = (segcopy!=object_id) | (segcopy==0) # True only for sky pizels or they
—main object, so other objects are masked.
mask = (segcopy!=object_id) & (segcopy>0)
#revmask = (segcopy!=object_id) & (segcopy>0)

14

npmask = np.array(mask, dtype='bool8"')

source_morphs = statmorph.source_morphology(image, objseg,label=object_id,,
—weightmap=wht, psf=psf)
morph = source_morphs [0]

#create a model using sersic values

ny, nx = image.shape

y, x = np.mgrid[0:ny, O:nx]

fitted_model = statmorph.ConvolvedSersic2D(
amplitude = morph.sersic_amplitude,
r_eff = morph.sersic_rhalf,
n=morph.sersic_n,
x_0O=morph.sersic_xc,
y_O=morph.sersic_yc,
ellip=morph.sersic_ellip,
theta=morph.sersic_theta)

fitted_model.set_psf(psf) # required when using ConvolvedSersic2D

image_model = fitted_model(x, y)

[21]: | #Plot results and fit!
bg_noise = 0 #if background flux is known enter it here
fig = plt.figure(figsize=(15,5),dpi=500,facecolor='white')
plt.suptitle('Object ID'+ str(object_id))
ax = fig.add_subplot(131)
ax.imshow(image, cmap='bone', origin='lower',

norm=simple_norm(image, stretch='log'))

ax.set_title('Original image')

ax = fig.add_subplot(132)

residual = (image - image_model)

ax.imshow(image_model + bg_noise, cmap='bone', origin='lower',
norm=simple_norm(image, stretch='log'))

ax.set_title('Fitted model')

ax = fig.add_subplot(133)
ax.imshow(residual, cmap='bone', origin='lower',
norm=simple_norm(image, stretch='asinh')) # using stretch=asinh,
—reduces prominance of background
ax.set_title('Residual')

[21]: Text(0.5, 1.0, 'Residual')

15

Object ID16571

Fitted model Residual

Original image

120

100

80

60

40

20

5 Conclusion

We see that statmorph is a very useful tool to identify mergers. This tutorial presents a more
streamlined way of identifying galaxy candidates that have undergone mergers by plotting the
Gini vs. Msg plot and then picking out the merger population from the plot. This method helps us
to visualize the data on mergers from catalogs such as CEERS for a desired sub-group of galaxies.
For further investigation, we can try getting the Gini vs. My plots for star-forming galaxies or
galaxies at higher redshifts to see how the merger ratios vary. The investigation done in this
tutorial shows that about 41/132 (~30%) of massive, quiescent galaxies at redshifts 0.5 < z < 2.5
are mergers.

6 References

Bruce, V. A., Dunlop, J. S., Cirasuolo, M., McLure, R. J., Targett, T. A., Bell, E. F., Croton,
D. J., Dekel, A., Faber, S. M., Ferguson, H. C., Grogin, N. A., Kocevski, D. D., Koekemoer, A.
M., Koo, D. C., Lai, K., Lotz, J. M., McGrath, E. J., Newman, J. A., & van der Wel, A. (2012).
The morphologies of massive galaxies at 1 <z< 3 in the Candels-UDS field: Compact bulges, and
the rise and fall of massive discs. Monthly Notices of the Royal Astronomical Society, 427(2),
1666—1701. https://doi.org/10.1111/j.1365-2966.2012.22087.x

Ellison, S. L., Wilkinson, S., Woo, J., Leung, H.-H., Wild, V., Bickley, R. W., Patton, D. R., Quai,
S., & Gwyn, S. (2022). Galaxy mergers can rapidly shut down star formation. Monthly Notices of
the Royal Astronomical Society: Letters, 517(1). https://doi.org/10.1093 /mnrasl/slac109

Fang, J. J., Faber, S. M., Koo, D. C., Rodriguez-Puebla, A., Guo, Y., Barro, G., Behroozi, P.,
Brammer, G., Chen, Z., Dekel, A., Ferguson, H. C., Gawiser, E., Giavalisco, M., Kartaltepe, J.,
Kocevski, D. D., Koekemoer, A. M., McGrath, E. J., McIntosh, D., Newman, J. A., .. Wuyts, S.
(2018). Demographics of star-forming galaxies since z 2.5. i. the uvj diagram in Candels. The
Astrophysical Journal, 858(2), 100. https://doi.org/10.3847/1538-4357 /aabcba

Rodriguez-Gomez, V., Snyder, G. F., Lotz, J. M., Nelson, D., Pillepich, A., Springel, V., Genel, S.,
Weinberger, R., Tacchella, S., Pakmor, R., Torrey, P., Marinacci, F., Vogelsberger, M., Hernquist,
L., & Thilker, D. A. (2018). The optical morphologies of galaxies in the ILLUSTRISTNG Simu-

16

[]1:

lation: A comparison to Pan-STARRS observations. Monthly Notices of the Royal Astronomical
Society, 483(3), 4140-4159. https://doi.org/10.1093 /mnras/sty3345

Whitaker, K. E., Kriek, M., van Dokkum, P. G., Bezanson, R., Brammer, G., Franx, M., & Labbé,
I. (2012). A large population of massive compact post-starburst galaxies atz> 1: Implications
for the size evolution and quenching mechanism of quiescent galaxies. The Astrophysical Journal,
745(2), 179. https://doi.org/10.1088,/0004-637x/745/2/179

17

	Abstract
	Introduction
	Data
	Method
	Conclusion
	References

