
Debugging Your Python Code: For Dummies

Tyler J. Metivier
University of Connecticut

Dept. of Physics

May 4, 2018

1 What’s the problem?

It doesn’t matter if you’ve written 1 script or programmed a space shuttle
launch- everyone’s code breaks at some point. What’s more important is
that you know how to interpret the error you’ve encountered and recover.
Tears won’t suddenly make your Numpy array callable.
Generally, there are three different types of errors in Python:

1. Syntax errors

2. Logic errors

3. Exceptions

From personal experience, I can say that there are myriad ways to end up
with one of the errors listed above- but there are more fundamental issues
that could plague your code.
Despite efforts to standardize the newest release of Python (3), many pro-
grammers and businesses have stuck with Python 2. The “end-of-life” date
(the predetermined date in which the product becomes obsolete) for Python
2 has even been extended 5 years until 2020 because of how many people
currently rely on it’s support.

So why don’t people just update their code?

1



Python 2 and Python 3 are incredibly similar, but there are some large
differences in how they accomplish tasks. Python 2 contains many built-in
functions and dependencies that simply don’t exist in Python 3. This can
be a major problem if you want to work in Python 3 but your code is based
on a function that doesn’t exist anymore.
So what if you run into this issue? Perhaps you were browsing Github and
downloaded some interesting-looking code to you. You try to run it and...

The terminal returns to us: the file name, the line that triggered the
error, and the type of error, respectively.
So we see that our file contains a syntax error in line 4 (more on syntax errors
in section 2). By inspection, we can see that the line, print“test”, does NOT
have parentheses around the argument: print(“test”). We received this error
because we tried running a code written in Python 2 on our system running
Python 31. The line above is completely valid in earlier releases of Python,
but now it isn’t. This is one example of how Python 3 requires more ”order”
than its predecessors. Indentation and syntax matter in the long run when
codes become complicated. Luckily, Python 3 comes with a very helpful
script that you can call in any directory: 2to3.
Now I could open my code and go through adding () after every “print” I see,
but what if there are thousands of lines or more errors hiding? Accomplishing
tasks systematically is generally much better practice than doing it manually.
Looking at our original problem:

We see the missing parentheses on line 4, just like we saw before. Now we
can enter the following into the terminal (the file here is called test.py):

1To find out which version of Python you have, type: “python -v” into the terminal
and it will return the installation directory and version.

2



Python’s 2to3 script uses
something called a “fixer”
to interpret code, identify
what’s outdated, and change
it into working code. Fix-
ers work by reading through
code and identifying Python
2-specific blocks of text.
When a piece of outdated
code is recognized, 2to3 will
scan through its database to
identify what the Python 3-
equivalent is. Simply run-
ning this program (as shown
above) will rewrite your orig-
inal file with the implemented fixes. However, 2to3 always saves a backup2.
If we run the same line again but with a -w after 2to3, this will restore the
source file to its original form.
As seen to the right, 2to3 subtracted the line that was causing trouble and
then put it back with parentheses. This can be a big time-saver depending
on what you’re working with.

Now if we reopen the file, we see that
parentheses have indeed been added.

But of course, most errors aren’t because of
conversion issues. The generalized type of

error we saw here was a syntax error. Syntax errors are ”fatal”- meaning
that when one is encountered, the code will fail to execute and the script will
stop being read at that line.
Above, we were kicked out of the code at line 4 when Python didn’t under-
stand the print argument. When Python encounters a line of code it can’t
read, it is a syntax error. Above is an example of an incorrect argument. Syn-
tax errors are also commonly due to typos or incorrect indentation (mixed
use of spaces and tabs).

2Adding a -n to your original call will generate no backup file- this is NOT recom-
mended.

3



A more complicated situation is the logic error. Logic errors could crash
your code or seemingly do nothing at all. They often go completely undis-
covered because your code may appear to run perfectly fine. However, that
doesn’t mean that it’s running correctly. Even though your code may appear
to be fine, you may have used the wrong variable name in a function and
your mathematical result is 5 orders of magnitude different than expected.
Lastly, we have the exceptions. This occurs when Python correctly inter-
prets the code you wrote, attempts to execute it, and for whatever reason
cannot. For example, if my code relied on a web-based repository and I
attempt to run it while on vacation at the Hubble Space Telescope- it may
throw an exception due to me not having the HST wifi-password (because
I’m in space... get it?). Python knows what I want to do, it just can’t do it
because there’s no internet connection.

2 How do I fix it?

After identifying the type of error, we can begin to try and figure out how
to solve the problem.

Dealing with syntax errors is generally not a very difficult task. Because
they are mostly comprised of typos, inconsistent indentation, and incorrect
usage of arguments- we can start fixing the problem when we know where it
is. Just like when we found the syntax error before, the terminal tells us the
file that caused it and the exact place where the code breaks down.
If the problem seems clear to you (made a typo, forgot parentheses, etc...)-
simply attempt to implement the fix and rerun your code. If you can’t iden-
tify the issue, try browsing a website like StackExchange to see if other people
have encountered the same problem3.
Learning Python means learning how other people code and deal with their
problems, as people often find ”better” and easier ways to accomplish such
things.
The most frustrating part about logical errors is that they are occasionally
invisible. If you’ve encountered a logic error, the first thing you can do is
look over your code entirely. The issue may be easy to identify- you may

3Link: https://stackoverflow.com/questions/tagged/python

4



have meant “x1” and accidentally put “x!”. Or your code may be comprised
of many convoluted mathematical functions that would take an incredible
amount of time to pour through.
If you really want to rid your work of logic errors- the recommended course
of action is to install a debugging software. Python comes with a debugging
module “pdb” installed, so this would be the best one to try initially.

We can debug a code of our choice with the terminal entry above. (Hope-
fully) the debugger will identify issues in your code and implement fixes.
If all else fails, you can go line by line and try to make sense of what could
be going wrong. Python will do exactly what you tell it to do- as long as
you know what you’re actually telling it to do. This is why debuggers can
be helpful when the source of the error is unknown. In a similar fashion to
2to3, debugging software looks for identifiable pieces of code and attempts
to implement corrections. Naturally, this method is not always perfect.

In science, being mindful of your expected results is vital. If you run your
program and receive a value, take time to consider if it’s reasonable or makes
sense given the situation. If you are expecting to receive a histogram with
an exponential trend but instead receive:

-you may initially want to run your fancy debugging software to fix the is-
sue. But that won’t help you whatsoever in this case. Nothing is actually
wrong with your code. Instead, if we look at the generated plot and notice

5



that something’s funky about the scale on the vertical axis- we are halfway
through solving our problem.
We may discover that a lonesome “log=True” was the culprit all along. Re-
moving that argument then generates:

We now have our expected exponential trend. But still there was nothing
ever wrong with the code- we were just accidentally telling it to do something
and it listened.

Exceptions are the least frightening to deal with, as this means that your
code is (probably) not broken. You are requesting something from Python
and it understands your request- it just can’t help you. That means it’s all
on you here. Once again, we must look and see where the terminal is telling
us the error is. Once we’ve found the location, we can implement fixes.
If we find the exception is thrown because there isn’t internet and we’re ask-
ing Python to go to a website- we either need to get a connection or work
around the issue.
Creating an “exception handling block” can allow us to bypass exception-
related errors. This is most commonly done with a “try-except block.” An
example of a try-except block is:

6



Under both try and except, we see we are ultimate attempting to call a text
file and call it “catalog.” We first try to simply call the file from our system.
If the file exists within your working directory, the catalog should be read
with no problem. If this file doesn’t exist, we attempt to call the file in an
alternative method with except.
As shown above, we first attempt to download the text file with os.system(...).
Here, we are telling our computer to “wget”4 (install from the internet) our
file from a web page, “dl base.” In this specific situation, we can define
dl base as some url to the website we want to get our file from. There is also
“/files/directory catalog 135.txt” appended at the end of the line. This just
specifies the exact file that we want to download from this website.

If your computer doesn’t have the file AND doesn’t have internet... it may
be time to call a local internet service provider.

Despite the fact that Python errors come in many different forms, it’s good
to have a methodology when working through them.

1. Read your code thoroughly before attempting to run it.

2. Identify the type of error you may be receiving.

3. Based on the type of error, use the provided suggestions or research
how to bypass your issues.

4. Never be afraid to use the internet as a guide- chances are that someone
in the world has already encountered the issue you’re facing.

4Wget is a very common program that allows you to download content from the internet
through the terminal/command line. (https://www.gnu.org/software/wget/)

7


