
Tutorial for Stacking FITS files and Bootstrapping with Python

Jonathan Mercedes Feliz1

1Dept. of Physics, University of Connecticut, Storrs, CT, 06269, USA
contact: jonathan.mercedes_feliz@uconn.edu

Abstract

This tutorial should be able to demonstrate how to access and stack FITS files from any
catalog or data set using Python, within the Jupyter Notebook module. Being able to add a buffer
to center all your files equally, stacking and bootstrapping. Providing a step by step procedure
using an example of a small project.

Introduction

Specifically we will be using FITS files from 3D-HST to look at and stack 24 micron
postage stamps for detection, which is a good proxy for the dust attenuation bump. This is to
ultimately get a total star formation rate vs mass relationship between quiescent galaxies within
the sample through a selection process. Specifically stacking to measure flux and calculate infrared
luminosity, which we will then use to bootstrap for error analysis.

Getting Started

The first thing you will want to do is make sure you have Python 2.7 (which is what
I will be using) or Anaconda installed on your computer. You can do this by either going on
https://www.anaconda.com/distribution/ or following the instructions on Python Beginner’s Guide.
Make sure you install the right installer depending on your OS system. You will need many python
libraries and modules for the following tutorial but all you need to do is install them by accessing
your terminal and following the documentation Installing Python Modules supplied by Python.
Accessing Jupyter Notebook is incredibly easy depending on which of the two avenues above
you choose, if you have Anaconda installed, just open the Anaconda-Navigator and launch the
Notebook application. If you installed Python directly, then you can follow Code Academy’s how-
to article to access them at: Code Academy Article.

Now the important thing to do as you start your venture is to make sure to import whatever
module you will need and how you will be referencing back to them:

1

mailto:jonathan.mercedes_feliz@uconn.edu
https://www.anaconda.com/distribution/
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org/2/installing/index.html
https://www.codecademy.com/articles/how-to-use-jupyter-notebooks


You could also define any functions that could be helpful and are necessary for your anal-
ysis in the next cell, like for example the following:

These functions will be useful for me but essentially the first one just changes a float to an
integer. The second will come in handy when we talk about adding a buffer to your FITS image,
but all it does is it takes a data frame and you can change the position of a column elsewhere. The
third one checks how much of a FITS image is filled with NaN, but this is only for a 297× 297
square image. The fourth is again only useful for a 297×297 square image, but it gets the distance
away from the center pixel. The final function finds the nearest element in an array that is similar
to a specific value I decide to give. Most of these might not make sense for you to use, but
they will be used by me to some degree as I go through the motions. Now that I have all of my
modules and functions ready to go, I start with accessing the catalogs that I will be working with.

2



Where I have read in the 5 fields of 3D-HST as well as some information from an ASCII
table. I now create a flag condition, I call it the UVJflag, where I make a selection from looking at
the UVJ diagram. The selection being that quenched galaxies are found to be UV > 1.3 and UV >
0.8 ·V J + 0.7, while star forming galaxies are located elsewhere. If UVJflag is equal to 1 then it is
a quenched galaxy, and when it is equal to 0 then it is a star forming galaxy. I go ahead and make
a for loop where I go through each of the catalogs and assign a UVJ flag to galaxies that meet my
selection requirements as well as take any necessary information that we will need into a .txt file:

3



You can see how the UVJ diagram looks with the distinction between SF (star forming)
and Q (quenched) galaxies for 4 separate redshift bins below:

4



Stacking

Before we even start to stack our FITS files, we need to make sure that they all have the
same dimensions and that they all have the same center. If they don’t have the same dimensions
and center then you will not capture every pixel correctly. If you don’t know what is the size of
your FITS image then you could easily check with print(image_data.shape), and this will
show you the dimensions of it.

Now that you know the sizes of your data you can decide a size to assign to them all. For
example, in my case COSMOS, GOODS-N, and GOODS-S has an image size of (283×283) while
AEGIS and UDS has (295×295). I decided to add a buffer to all of them so that they’re (297×297).
The reason why these are all odd by odd dimensions is because the center would be exactly in
the middle, if not then the center would be offset. This means that for the AEGIS and UDS FITS
files I will add two rows and columns of NaN surrounding the data, as to not affect the overall
information, which I essentially do here:

Where the first few lines are just inputting variables from the .txt file I created earlier. The
two lines after shine=[] is selecting only galaxies that are above log M? > 8.8, are SF and within
a redshift bin of 0.5 < z < 1.0. The for loop allows for us to go through the catalogs and access all
of the FITS files that satisfy that condition, open up the data and concatenates two columns filled
with NaNs. We use one of the functions we’ve created previously change_column_order and
just move one of the new NaN columns to the immediate right. The rest is to create two rows of
NaNs and then order the the data array so we can have the buffer truly encompass the data. Finally

5



we just write our new buffered data into a FITS file using the last three lines, where within the
.writeto() argument we set overwrite to True so we can rewrite the file whenever we need to
fix or add any code within the loop. For COSMOS, GOODS-N, and GOODS-S we do essentially the
same but we add 14 columns and rows:

Now that we’ve added a buffer to all of our selected FITS files, we’re ready to start stack-
ing. There are generally two different types of stacks you can choose to do. One is a mean stack
while the other is a median stack. Doing a median stack is less sensitive to extreme things so for
this example we’ll be doing that and not using a mean stack. Essentially all a stack is, is like shoot-
ing a dart through each pixel for every z value of this "cube" of images and we flatten it, returning
us back to a 2-D image. What I’ll be doing is within a redshift bin, making 11 mass bins, with 0.2
dex interval between them.

6



We’ve introduced a for loop to separate out all of the galaxies into the mass bins they fall
into, using the galaxies_bin_maker() and galaxies_list_maker() functions. Where the
former creates a list of the field and ID number of the galaxies in a mass bin, while the latter takes
that list and the directory containing all the selected galaxies and creates another list with only the
mass binned galaxies:

7



Stacking is now possible now that we have broken down our selected galaxies into mass
bins we just use a few lines of code. We first create an empty list which I do by writing cube=[]
and we need to incorporate a for loop to iterate through the list we created in the previous cell
using the galaxies_list_maker() function. We then make sure to access the data, using the
fits.getdata() function, and we have memmap=False to avoid running into a problem where
if you’re opening too many FITS files in a loop the memory associated with that process gets full.
So this just guarantees that after every iteration is done with the FITS data it erases it from the
memory to continue. We append each FITS image onto the cube list essentially creating a cube
as my variable name suggests. The stack is ultimately completed by using the np.nanmedian()
function, which guarantees us that the NaNs we introduced from the buffer is ignored.

The flux line is the crux of why we wanted to stack, for detection. Which we measure
from a stack to get a given flux using aperture photometry. Which we do with the aperture_phot()
function, which allows us to get flux through the following steps:

8



Bootstrapping

Stacking might generate some error which we’d expect, and errorbars will most likely
come from bootstrapping. Where I need to resample the data with some deviation and do a certain
amount of iterations. To be more pedantic, this method of bootstrapping, is a statistical technique
for estimating certain quantities about a population (pool of data) by averaging estimates from
multiple small data samples. That the samples are constructed by drawing pick (an observation)
from a large data sample one at a time and returning them to the data sample after they have

9



been chosen. This allows for a given selection to be included in a small sample more than once.
Essentially this approach is generally called sampling with replacement. This can be broken down
to 5 steps:

1. Choose a number of bootstrap runs (iterations) to perform

2. Choose the size of the sample

3. While the size of the sample is less than the chosen size

i Randomly select an observation from the dataset

ii Add it to the sample

4. Throw the observation back to the pool

5. Repeat until sample is filled

The way I introduce bootstrapping to this example is by allowing for my stack within
a certain mass bin to reuse a galaxy if the pick deems it so. By using np.random.randit() it
returns an array the length of the mass bin but filled with indexes randomly picked from the original
mass bin. Which we then allow for a sample seed to select from the original dataset and stack like
we’ve previously done. We could see how the bootstrap works with how the flux values deviate
through the multiple iterations and mass bins in the histogram below:

10



Log v. Linear

Normally errorbars (±δy) in a linear plot are lines extended equally above and below a
point (y). But if you were to plot this on a logarithmic plot, then absolute error bars that were
once symmetric in the linear x− y plot, becomes asymmetric. The lower bar is longer than the
upper one, which can give misleading information about the quantities they represent. Which can
become a huge problem if the points vary by several orders of magnitudes. Errors in log are done
by recognizing that what’s being plotted isn’t exactly y but a function z = log(y), so the error δz can
be found to be:

δz = δ
[
log(y)

]
δz ≈ dz = d

[
log(y)

]
=

1
log(10)

dy
y

=
1

2.303
dy
y

δz ≈ 0.434
δy
y

Where we see that the correct error, shown to be the relative error, will display correct errorbars
on logarithmic plots, shown below.

11



Figure 1: Courtesy of Professor Eric M. Stuve, a more in depth discussion and explanation about
this can be found at Estimating and Plotting Logarithmic Error Bars

Relevance

You should now be able to stack your own FITS files by implementing what I’ve done to
some degree on your own data. As well as being able to bootstrap at well which is important for
just about anything, depending on what you’re doing. Especially if you have a small sample size
and you want to gain the variance or any statistical analysis you need. Introduction to the Bootstrap
Method gives a much more detailed explanation of bootstrapping and its benefits.

12

https://faculty.washington.edu/stuve/log_error.pdf
https://towardsdatascience.com/an-introduction-to-the-bootstrap-method-58bcb51b4d60
https://towardsdatascience.com/an-introduction-to-the-bootstrap-method-58bcb51b4d60

