
Lillian Wright May 3, 2020

 Beginner’s Guide to Coding: No Experience Necessary

Abstract

This tutorial consists of a brief overview of some basic computer knowledge and jargon,
followed by a tutorial for creating a plot of star formation rate vs stellar mass taken from galaxies
in the 3D-HST Treasury program. In addition to this, I am hoping to tackle some of the most
common mistakes and obstacles encountered by undergraduate students with no background in
computer science or coding language whatsoever. I start by covering the basic skills, such as
orienting oneself in a computer system using a terminal, defining and using different files and
directories, and knowing the difference between a terminal and a python shell. I will then
demonstrate different simple plotting techniques in a Jupyter notebook, with an example plot
which contains a sub-panel with color-coded data.

Introduction

Learning to code may seem like a daunting and overwhelming task to tackle head-on (which,
let’s be honest, it sometimes is). Granted, it is a frustrating process with a steep learning curve
and you will inevitably make many mistakes. But the reward when you are able to execute code
on your own is extremely gratifying. In this tutorial, I will attempt to help you navigate some of
the more common mistakes and misconceptions that first-time coders experience. The purpose
of this tutorial is to walk you through some of the basics step-by-step to leave no room for
misconception.

First things first: the best way to learn is by doing! Let's start by locating and opening a terminal.
Depending on the computer, this could be in a couple of different places so I will go over two
separate scenarios (Mac vs Windows):

Mac:

The terminal on my own macbook is typically located at the bottom right of my dock and looks

like a little winky face missing an eye >_<

If you have never opened a terminal on your computer, you may have to open up your
launchpad which should be at the bottom left of your computer screen and is depicted with

this symbol:

Lillian Wright May 3, 2020

When you have opened your launchpad, type “terminal” into the search bar at the very top: your

terminal icon should be the first to pop up:

Windows:

First go ahead and find your computer’s start menu at the bottom left of your desktop.

The icon should look something like this:

When you have opened the start menu, look for the search bar next to the icon and type in

“command prompt”:

The first item that comes up is your terminal icon, which for windows looks like this:

Now that you have located your terminal, let's go ahead and use it!
One important thing you can use your terminal for is orienting yourself within your own
computer.
In other words: you can directly ask your computer “Where am I?”
To do this, simply type pwd into the command line and hit enter (this stands for “print working
directory” and will tell you exactly where you are)

For example, when I open up my terminal by clicking on the icon, it looks like this:

Notice there is a text cursor next to the second line titled (base)
This is known as the command line and is exactly what it sounds like: where you type in your
commands.

Lillian Wright May 3, 2020

When I ask my computer to “print working directory” It looks like this:

My computer then answered my question to “where am I?” on the line directly below the original
command: “/Users/lilywright” .
This tells me that I am currently in a folder titled “lilywright” in a directory titled “Users” in my
computer- pretty neat huh? This is also known as my home directory.

As you become more experienced with using your terminal, you can ask more complex
questions or even navigate through your computer by creating different files and directories.
Think of your terminal not only as a compass but also a means of transportation to get to
wherever in your own computer you want to be. All you need to know is your destination
“address” (i.e., the file path name/location).

For example, say you have downloaded a set of data that you want to use to create a graph.
Naturally, this data set is now in your “Downloads” folder. But if you are not located in your
downloads folder when you attempt to read your data, your computer won’t be able to find it.
Think of it like trying to find your bed in your kitchen, or a sink in the living room- it doesn't make
sense right?

For beginners, it might be a little easier to figure out exactly where you are in your computer and
where you want to go using a Jupyter notebook. We will talk about Jupyter Notebook in more
detail briefly, but for now always keep in mind that your terminal is available at any time to help
you orient yourself.

Where can I learn to “speak” computer?

For beginners with no background in computer language, I recommend checking out Code
Academy and Data Camp:

● Code Academy: https://www.codecademy.com/
● Data Camp: https://www.datacamp.com/

https://www.codecademy.com/
https://www.datacamp.com/

Lillian Wright May 3, 2020

Both of these sites offer a limited number of free coding lessons- yay!
These lessons will really help you get the feel of how to interact with your computer through the
coding language known as Python.
These courses will also help you gain some basic knowledge and confidence as you will be
guided through all of the lessons in a python shell. It is good to get familiar with the shell format
as this is what you will be working on once you are ready to download the software

You can also find several Python coding tutorials similar to the one you are currently reading in
the Astronomy Tutorial Repository created by the Whitaker Research Group. These tutorials
cover topics such as writing a Python script, debugging your code, gaussian fit, and much more.
Astronomy Tutorial Repository:
https://www.astrowhit.com/astronomy-research-tutorial-repository

Downloading Anaconda

After you have taken some online classes, the next step would be to download Anaconda.

**An Important Distinction: Anaconda is the name of a software that is a Python distribution
platform that you are about to download. Python is the name of the language you are learning to
code in. There are many other coding languages you may have heard of, such as Java and C.
We will be using Python because it is user-friendly as well as being most convenient for our
coding purposes. Moreover, in Python there is a large library of astronomy-specific codes that
you may find broadly helpful for your own research.

To Download Anaconda: https://www.anaconda.com/products/individual

1) Follow the installation instructions on the website and you will see a little green icon

in your “Applications” folder.
2) Go ahead and click on it, you will then be brought to the “Anaconda Navigator” which

presents many different options to choose from.

https://www.astrowhit.com/astronomy-research-tutorial-repository
https://www.anaconda.com/products/individual

Lillian Wright May 3, 2020

Today we will be working in Jupyter Notebook but it is important to note that there are a lot of
other useful programs included in this package, including Spyder (this program combines a
terminal with a text editor so that you can do all of your coding in one place) as well as Glueviz
(this program is typically used to create complex plots).
*Note: To see a nice tutorial about using Glueviz to create some nice U-V/V-J rest-frame color
diagrams, click here

3) For now, click on the Jupyter Notebook “Launch” button to launch the program!

The first thing you will see is the Jupyter “Home Page”

This home page lets you choose where in your computer you want to open a notebook.
Remember earlier I mentioned that it might be a little easier for beginners to orient themselves
in Jupyter rather than with a terminal? This menu makes it a little easier for you to determine
where you are and make sure you open a notebook where you want to.

If, for example, you have downloaded a data set that you want to create a plot with- naturally it
will be in your “downloads” folder as listed above.
Because you cannot access your bed while standing in your kitchen, you will need to go into the
“Downloads” folder to access the data you want to use.
That being said, it is generally good practice to move the data into a new more permanent
location within a research directory. I recommend taking a few moments to organize your
project and data by setting up a directory structure. For example, I have defined a folder named
“Research” where I keep all of my research data. This will save you time later, I promise.

4) Once you are in the the correct folder where your data resides, you can create a new

Jupyter notebook by going to the upper right corner of the screen and clicking

then selecting “Python 3” from the dropdown menu . Your new notebook should
look something like this:

https://whitaker.physics.uconn.edu/wp-content/uploads/sites/2038/2017/02/PythonTutorial_Horanzy_v4.pdf

Lillian Wright May 3, 2020

*Note: Don’t forget to name your notebook so you don’t lose it!

Importing Packages

Let’s import a few packages that will help us read in our data and make some nice graphs.
Some common packages you will be importing almost every time you open a notebook are
numpy and matplotlib .
numpy is a package which helps processing number arrays and matplotlib is handy for
making plots.
Just like how your computer cannot locate your data if you don’t tell it exactly where to look, you
also need to load and define packages to be able to use them.
If ever you get an error that it doesn’t know what package you are trying to use, your first line of
defense is to make sure you have loaded/defined this package correctly.

To import the numpy and matplotlib functions: simply type in your command line:

In order to run this command, click on the “Run” icon at the top of the screen
This will run the command and bring you to the next command line.

Reading Data

Now that you have imported these packages, you can start by “reading in” your data.

*Note: Reading data incorrectly is one of the more common problems that may cause difficulty
later on in the Python script. It is imperative you take a little bit of extra time to ensure that this
step is completed correctly.
 A great tutorial that goes into more detail about the process of reading in data can be found
here, but for now I’ll just give you the brief overview.

You will first want to identify which type of file you are reading in (this will typically be something
along the lines of an ascii, txt, fits, or .csv files)

https://whitaker.physics.uconn.edu/wp-content/uploads/sites/2038/2018/05/Python-Tutorial-Reading-and-Manipulating-Catalogs-v2.pdf

Lillian Wright May 3, 2020

For the purposes of this tutorial, let's say you are trying to read an ascii file (otherwise known as
a text or txt file because the data is typed out and stored in a text format).

You can determine file type by looking at the last three letters after the period of the file name
(assuming it was named appropriately).
For example, the file we will be looking at in this tutorial (which can be accessed here) is named

“3dhst_whitaker14_sfr.dat.txt” which is a txt or ascii file because it ends with .txt
This may seem self explanatory, but it is really important that you know which type of file you
are trying to read, otherwise your computer will either read your data incorrectly if at all.

In the case where we are reading an ascii file, we will need to import one more package from
astropy. To do this, type in the command line:

Now, let’s tell our computer where to actually locate our file.
Remember, for this example we know that we saved our data in our “Downloads” folder, so to
access that data we have to tell our computer to look in that folder. We do this by defining a
path for our computer to take to reach our data, which in this case would be “Downloads”
If you have already opened your notebook in your “Downloads” folder you just need to define
your current location:
To do this, simply type:

If for some reason you are not located in the folder where your data resides, you can define the
full pathname:

To specify even further, we must also define the name of the file we are trying to locate.
At the same time, we will use the ascii feature we imported from astropy to read our data as a
table by defining three factors: data start, header start, and delimiter.

There are a few important things to notice about this command:

● First, I defined my entire data set as “whitaker” to save time and typing.
● Second, I told my computer exactly where to find the file by typing catalog_path (which

we have already defined as our “Downloads” folder) + “3dhst_whitaker14_sfr.dat.txt”
(which is our file name)

https://3dhst.research.yale.edu/Publications_files/3dhst_whitaker14_sfr.dat

Lillian Wright May 3, 2020

● Third, I indicated where and how to read the data by defining the data start, header start
and delimiter. The data start defines the line data actually starts on (these files often
have written comments in the first few lines). Similarly, header start defines where the
header information is located. Finally, delimiter is the spacer between data columns
(see below for definitions).

To better understand how to define these three variables, let’s open up our file and take a look:

As you can see, our header names for our columns begin on line 1, however, if you were to
open this up in a terminal, this line would present as line 0
**Rule of thumb: subtract 1 from the row number that is listed in Jupyter Notebook.

You may now logically assume: “I can see that the data points start at line 10, so shouldn’t you
define datastart=9 (10-1)?”
This is logical thinking, however, notice that whoever created the file put a # symbol on each
line of written commentary (lines 2-9)

Putting this # symbol in front of any line of code automatically tells Python not to run that line of
code. For this reason, the # symbol is very useful for leaving written commentary on your code
for yourself and others to view.
However, this also means that your computer will read line 10 as line 2 (because there are # on
lines 2-9).

If we refer back to our Rule of thumb we know to define our datastart as 2-1 = 1.

Delimiter Types

The delimiter can be a source of frustration. Basically defining your delimiter tells your computer
what symbol to look for to separate your data points.

Lillian Wright May 3, 2020

You can see clearly in the table above that header names and data points are separated by a

symbol, this is also known as a tab delimiter, and should be specified as so with a
backslash t:

Another common delimiter is the space bar:

You may also see commas (,), semi-colons(;), quotes(“, ‘), braces({ }), slashes(/ \), or pipes (|).
Just make sure that whatever separates your header values and data points is what you define
to be your delimiter, otherwise your computer will not correctly read your data.

If you are able to run this line of code with no errors, the best practice is to then print your data
table to make sure that it was read correctly. To do this, simply type print(name of your data
structure here) .

Your computer should give you something like this:

If you have read your data in correctly, you should see the correct data values listed under the
correct header names, and the Length at the bottom should be equal to the amount of rows in
your data set. For this example, we know our data has 50 rows so this is what a successful
attempt would look like! If these values don’t match up correctly, something went wrong and you
might need to do some investigative work.

Making your first plot

Now that we have successfully read our data table, let’s get to the fun part and start making
some plots!

Lillian Wright May 3, 2020

The first thing you want to do is figure out what to plot. Our data set contains lots of information
about the galaxies used to create it: stellar mass, redshift, star formation rate, luminosity etc.
When you are exploring new data sets, it can be helpful to plot various columns and look for
patterns and trends within the data. For the purposes of this tutorial, let’s look at star formation
rate as a function of stellar mass. What does this relation tell us physically? Let’s plot it and
find out!

We will first define what we want to call star formation rate and stellar mass. In the catalogues,
star formation rate is listed as “SFR” and stellar mass is listed as “lmass”. Note that the stellar
mass as well as the star formation rate are logarithmic base-10 measurements. In order to avoid
confusion, we will define these variables as “lmass” and “lsfr” like so:
*Information about the log/linear nature of data can be located in the written comments section
of the file*

Remember when we imported matplotlib (used for graphing) as plt ? Well now that we are
plotting we will use the shortcut plt before every command so that our computer knows that we
want to make a plot. If we were to make a scatter plot of star formation rate as a function of
stellar mass, the code would look something like this:

Notice that you defined you wanted a scatter plot, with the x-axis labeled “Log(Stellar
Mass)[M_☉]” and the y-axis labeled “Log(SFR_UV+IR)[M_☉ YR^-1]”.
This graph looks good but let’s add some more detail, like a grid and title.
The commands for title and grid lines are the following:

Lillian Wright May 3, 2020

*Note: Make sure that every time you are labeling something (such as an axis or title name) you
put the words in “” or ‘’‘. This will tell your computer to treat the code as text and not a command.

To better understand what we have plotted, let’s take a look at the original paper where this
data was derived: https://iopscience.iop.org/article/10.1088/2041-8205/783/2/L30

You’ll notice that we see the same trends but the data in the paper is divided into four bins of
redshift/lookback time. To display our data even better, we want to color code these galaxies by
redshift.

Adding Layers to Plots

First, we will define redshift as the value in between zmin and zmax listed for each data point
so that each point falls into a separate redshift bin. Define zmin , zmax , and redshift as the
following:

Now we will create a second plot that displays three separate variables simultaneously: stellar
mass, star formation rate, and redshift.
To do this, you will have to use the ax. command to define a separate subplot.

Notice that we have replaced every plt with an ax. except for plt.show

https://iopscience.iop.org/article/10.1088/2041-8205/783/2/L30

Lillian Wright May 3, 2020

We are still creating a scatter plot of stellar mass vs SFR but we have defined a third variable
redshift (c=redshift) which adds the color layer. Normally sub-plot implies separate panels, but
in this context it is just overplotting data on the same original panels. This graph should present
as the same scatter plot above with additional color coding by redshift:

This looks much better.

Adding Functions to Plots

Whitaker et al. (2014) calculated functions of best fit for each redshift bin- how do you plot this
and label it on your graph?

Lillian Wright May 3, 2020

Notice that we clearly defined variables x1 and y1 as redshift points within the defined
category and best fit function. We used the plt.plot command to plot the function, and told
our computer we wanted the color to be “purple” and the label for this function to be “0.5<z<1.0”

When you use the command plt.legend() , the label is then shown in the legend in the
upper left hand corner of the graph. You can do this separately for each redshift category and
end up with a final graph that looks like:

Concluding Remarks

Now that you have successfully plotted your first graph with Python (hooray!) I hope that you are
feeling a bit more comfortable and less intimidated when it comes to coding. This tutorial was
intended to walk you through some of the more common obstacles that many undergraduate
astronomy majors face when first starting out. (And hopefully I was able to save you some time
and frustration as well)

As daunting as it may at first seem (and as frustrating as it will always be) learning to code with
Python is an imperative skill for the modern astronomer. It is an extremely versatile computer
language that will allow you to analyze, display, and interpret data through your own research.
You will inevitably face more obstacles on this steep learning curve so don’t be afraid to ask for
help from your teachers, advisors, peers, comp-sci majors, GOOGLE, etc.

The key to success is practice so if you have successfully completed this tutorial a good next
step would be to try and follow some more advanced tutorials that can be found in the
Undergraduate Research Tutorial Repository:
https://www.astrowhit.com/astronomy-research-tutorial-repository

Good Luck and Happy Coding!!! :)

https://www.astrowhit.com/astronomy-research-tutorial-repository

